Boundary behaviour of Loewner Chains

نویسنده

  • Alexander Kuznetsov
چکیده

In paper found conditions that guarantee that solution of LoewnerKufarev equation maps unit disc onto domain with quasiconformal rectifiable boundary, or it has continuation on closed unit disc, or it’s inverse function has continuation on closure of domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomially bounded solutions of the Loewner‎ ‎differential equation in several complex variables

‎We determine the‎ ‎form of polynomially bounded solutions to the Loewner differential ‎equation that is satisfied by univalent subordination chains of the‎ ‎form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$‎, ‎where‎ ‎$A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally‎ ‎Lebesgue integrable mapping and satisfying the condition‎ ‎$$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t‎ ‎[A(tau)...

متن کامل

Loewner Chains on the Universal Covering Space of a Riemann Surface

Let R be a hyperbolic Riemann surface with boundary ∂R and suppose that γ : [0, T ] → R ∪ ∂R is a simple curve with γ(0, T ] ⊂ R and γ(0) ∈ ∂R. By lifting Rt = R \ γ(0, t] to the universal covering space of R (which we assume is the upper half-plane H = {z ∈ C : Im[z] > 0}) via the covering map π : H → R, we can define a family of simply-connected domains Dt = π(Rt) ⊂ H. For each t ∈ [0, T ], s...

متن کامل

Loewner Chains in the Unit Disk

In this paper we introduce a general version of the notion of Loewner chains which comes from the new and unified treatment, given in [5], of the radial and chordal variant of the Loewner differential equation, which is of special interest in geometric function theory as well as for various developments it has given rise to, including the famous Schramm-Loewner evolution. In this very general s...

متن کامل

Schramm-Loewner evolution and Liouville quantum gravity.

We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal w...

متن کامل

A note on the boundary exponent and rate of escape for the Schramm-Loewner evolution

We give an estimate for the probability that a Schramm-Loewner evolution (SLE) curve of parameter κ ∈ (4, 8) hits a disconnected set connected to the boundary. This is used to estimate the rate of escape. The main estimate concerns the relationship between the Hausdorff content of a set and its extremal length.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008